
Copyright ECOTRONS LLC
All Rights Reserved

EcoCoder-AI

User Manual

V2.3

Copyright ECOTRONS LLC
All Rights Reserved

Revision History

Time Version Detail Reviser

May. 2, 2019 V1.0 First version David Wang

Sep. 20, 2019 V1.1 First page updated David Wang

Nov. 10, 2019 V1.2 Add external mode David Wang

Feb. 19, 2020 V2.0 Block update, detailed using instructions,

external mode update

David Wang

Luke Wang

Feb. 19, 2020 V2.1 Summary update David Wang

Apr. 17, 2020 V2.2 Add 3 dependencies David Wang

May 11, 2020 V2.3 Contact info updates Zack Li

Contact us

Web: http://www.ecotrons.com

Email: info@ecotrons.com

ev-support@ecotrons.com

Address: 13115 Barton Rd, Ste H

 Whittier, CA 90605 USA

Telephone: +1 562-758-3039 / +1 562-713-1105

Fax: +1 562-352-0552

http://www.ecotrons.com/
mailto:info@ecotrons.com
mailto:ev-support@ecotrons.com

Copyright ECOTRONS LLC
All Rights Reserved

Content

Chapter 1 Summary .. 6

Chapter 2 Software Installation .. 7

2.1 Computer Configuration ... 7

2.2 Operating System .. 7

2.3 MATLAB Version ... 7

2.4 Denpendencies for EcoCoder-AI Installed in Linux ... 8

2.4.1 Ubuntu .. 8

2.4.2 Minicom .. 8

2.4.3 ROS .. 8

2.4.4 EcoSDK-S2 ... 9

2.4.5 EcoSDK-XV ... 10

2.4.6 MATLAB ... 10

2.4.7 OpenSSH.. 11

2.4.8 Expect .. 11

2.4.9 Tcl .. 11

2.5 Install EcoCoder-AI in Linux .. 12

2.5.1 Preparation ... 12

2.5.2 Installation .. 12

2.6 Install EcoCoder-AI in Windows .. 13

2.6.1 Preparation ... 13

2.6.2 Installation .. 13

Chapter 3 Quick Start .. 15

Copyright ECOTRONS LLC
All Rights Reserved

3.1 Quick Start in Linux ... 15

3.1.1 Create Working Directory ... 15

3.1.2 Open the Model .. 15

3.1.3 Build the Model... 16

3.1.4 Build Other Models ... 17

3.1.5 Run on PC .. 18

3.1.6 Run on ACU ... 21

3.2 Quick Start in Windows... 24

Chapter 4 Library .. 25

4.1 EcoCoder Target Definition ... 25

4.2 ROS&CyberRT .. 26

4.2.1 Publish Message Module .. 26

4.2.2 Subscribe Message Module .. 27

4.2.3 ROS Info Module ... 28

4.3 Socket CAN Module .. 29

4.3.1 Receive CAN Raw with Trigger .. 29

4.3.2 Transmit CAN Message ... 30

4.3.3 Read CAN Message ... 31

4.3.4 Send CAN Message ... 32

Chapter 5 Define ROS Topic .. 34

Chapter 6 External Mode .. 35

6.1 Demo Directory ... 36

6.2 Make the Model Support External Mode ... 36

6.2.1 New Model Supports External Mode by Default .. 36

Copyright ECOTRONS LLC
All Rights Reserved

6.2.2 Use Command-Line to Convert the Old Model .. 36

6.2.3 Change the Configuration of the Old Model .. 36

6.3 IP Settings for External Mode ... 38

6.4 Using Different Ports ... 38

6.4.1 Change the Port in Simulink .. 38

6.4.2 Change the Port in Target ... 39

6.5 EcoCoder Build Model .. 39

6.6 Connect the Host and the Target .. 40

6.6.1 For MATLAB 2019a or Earlier Version .. 40

6.6.2 For MATLAB 2019b ... 41

6.7 Special Notes for External Mode .. 42

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 1 Summary

EcoCoder-AI is an add-on library to Matlab/Simulink for AI controllers, which use Nvidia Xavier,

or NXP S32V234 chips. EcoCoder-AI integrates auto code generation, compilation and on-the-fly

calibration in one tool chain. With EcoCoder-AI, a Simulink model can be converted directly into

a Linux-based executable program for the target controller and deployeded to the target. It helps

developers make most of the Simulink generic libraries and use a model-based method to

develop Linux-based applications. EcoCoder-AI has been used for autonomous driving control

systems.

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 2 Software Installation

2.1 Computer Configuration

Requirement Minimum Configuration

CPU Intel(R) Core(TM)2 Duo CPU E4600 @2.40GHz
RAM 2G

Hard Disk 10G+ available space

Requirement Recommended Configuration

System Language English

CPU Intel(R) Core(TM) i3-2120 CPU@3.30GHz
RAM 4G

Hard Disk 10G+ available space

2.2 Operating System

The operating systems that EcoCoder-AI supports:

 Ubuntu 14.04_amd64

 Ubuntu 18.04_amd64

 Windows XP

 Windows 7

 Windows 10

Cross-compile can only be implemented in a Linux system. Therefore, the code generated in

Windows needs to be copied to a Linux system or the target to compile.

2.3 MATLAB Version

EcoCoder-AI is compatible with MATLAB of following versions:

 MATLAB R2014b 32-bit/64-bit

 MATLAB R2015a 32-bit/64-bit

 MATLAB R2015b 32-bit/64-bit

Copyright ECOTRONS LLC
All Rights Reserved

 MATLAB R2016a 64-bit

 MATLAB R2016b 64-bit

 MATLAB R2017a 64-bit

 MATLAB R2017b 64-bit

 MATLAB R2018a 64-bit

 MATLAB R2018b 64-bit

 MATLAB R2019a 64-bit

 MATLAB R2019b 64-bit

2.4 Denpendencies for EcoCoder-AI Installed in Linux

2.4.1 Ubuntu

Ubuntu is an open-source GNU/Linux operating system for desktop applications. Created by

Canonical Ltd., Ubuntu is based on Debian GNU/Linux and supports x86, amd64 (x64) and other

architectures. For more details, please refer to Ubuntu official website or Ubuntu - Wikipedia.

For instructions on how to install a desktop Ubuntu, please refer to Installation guides. For Linux

beginners, we recommend quick tutorials to get started with command-line tools.

 If ACU is EAS2A01, please install Ubuntu 14.04_amd64.

 If ACU is EAXVA01, please install Ubuntu 18.04_amd64.

2.4.2 Minicom

Minicom is a text-based modem control and terminal emulation program for Unix-like operating

systems. Minicom is commonly used as a remote serial console, which may be the last resort to

access a computer if the LAN is down. For instructions, please refer to minicom(1) - Linux man

page or Minicom - Community Help Wiki - Ubuntu Documentation. On Ubuntu systems, you can

use the following command to install Minicom:

$ sudo apt-get install minicom

2.4.3 ROS

https://www.ubuntu.com/
https://en.wikipedia.org/wiki/Ubuntu
https://tutorials.ubuntu.com/tutorial/tutorial-install-ubuntu-desktop?_ga=2.211174742.2100710443.1556627609-640623783.1556266827#0
http://www.ee.surrey.ac.uk/Teaching/Unix/
https://linux.die.net/man/1/minicom
https://linux.die.net/man/1/minicom
https://help.ubuntu.com/community/Minicom

Copyright ECOTRONS LLC
All Rights Reserved

ROS (Robot Operating System) is a robot software platform that provides functions similar to an

operating system for heterogeneous computer clusters. ROS provides some standard operating

system services such as hardware abstraction, low-level device control, common function

implementation, interprocess messages, and packet management. ROS is based on a graph-like

architecture whereby processes at different nodes can subscribe, publish, and aggregate various

information (such as sensing, control, state, planning, etc.). ROS can be divided into two layers,

the lower layer is the operating system layer described above, and the upper layer is the various

software packages that contributed by different user groups to realize different functions, such

as localization and mapping, action planning, sensing, simulation and so on. For information on

how to install and use ROS, please refer to Documentation - ROS Wiki.

 If ACU is EAS2A01, please install ROS Indigo under Ubuntu 14.04_amd64.

 If ACU is EAXVA01, please install ROS Melodic under Ubuntu 18.04_amd64.

2.4.4 EcoSDK-S2

 If ACU is EAS2A01, please install EcoSDK-S2.

 If ACU is EAXVA01, please refer to 2.4.5 EcoSDK-XV.

EcoSDK-S2 provides users with a complete application development environment, including:

 Cross-development toolchain: consists of a cross-compiler, a cross-connector, a cross-

debugger, and other tools for application development.

 System roots: EcoSDK-S2 contains 2 system roots: one for the development host, which

contains the cross-development toolchain and other tools; the other for the target, which

is a complete root file system for the target, contains development kits with header files

and libraries.

 Environment configuration: using the script provided by EcoSDK-S2, users can configure

a cross-development environment on the development host.

 Analysis Tools: A variety of userspace tools for analyzing user applications on the target

system.

http://wiki.ros.org/

Copyright ECOTRONS LLC
All Rights Reserved

EcoSDK-S2 provides application developers with all the necessary tools to write applications

based on the Linux operating system and ROS. For details, please refer to EcoSDK-S2 User Manual.

2.4.5 EcoSDK-XV

 If ACU is EAS2A01, please refer to 2.4.4 EcoSDK-S2.

 If ACU is EAXVA01, please install EcoSDK-XV.

EcoSDK-XV is a cross-development tool for EAXVA01. It provides users with a complete

application development environment, including:

 Cross-development toolchain: consists of a cross-compiler, a cross-connector, a cross-

debugger, and other tools for application development.

 System roots: EcoSDK-XV contains 2 system roots: one for the development host, which

contains the cross-development toolchain and other tools; the other for the target, which

is a complete root file system for the target, contains development kits with header files

and libraries.

 Environment configuration: using the script provided by EcoSDK-XV, users can configure

a cross-development environment on the development host.

 Analysis Tools: A variety of userspace tools for analyzing user applications on the target

system.

EcoSDK-XV provides application developers with all the necessary tools to write applications

based on the Linux operating system and ROS. For details, please refer to EcoSDK-XV User Manual.

2.4.6 MATLAB

MATLAB is a commercial mathematics software produced by MathWorks. MATLAB provides an

advanced computing language and interactive environment for algorithm development, data

visualization, data analysis, and numerical computing. In addition to common functions such as

matrix operations, drawing functions/data images, MATLAB can also be used to create user

interfaces and call programs written in other languages (including C, C++, Java, Python, and

FORTRAN). MATLAB is not only used for numerical calculations, but also suitable for different

fields of application, such as control system design and analysis, image processing, signal

Copyright ECOTRONS LLC
All Rights Reserved

processing and communication, financial modeling and analysis, with the help of many additional

toolboxes. As integrated with MATLAB, Simulink provides a model-based development

environment for system simulation, dynamic/embedded system development, etc. For

information on how to install and use MATLAB, see MATLAB Documentation - MathWorks. For

information on how to use Simulink, see Simulink Documentation - MathWorks.

The components you need to install when installing MATLAB are:

 MATLAB

 Simulink

 MATLAB Coder

 Simulink Coder

 Embedded Coder

We recommend you install the following components as well:

 Stateflow

2.4.7 OpenSSH

To make sure EcoCoder-AI can enable users to calibrate the model using Simulink external mode,

the installation of OpenSSH is suggested. To install it, use the command below in Ubuntu:

$ sudo apt-get install openssh-client

2.4.8 Expect

To make sure EcoCoder-AI can enable users to calibrate the model using Simulink external

mode, the installation of Expect is suggested. To install it, use the command below in Ubuntu:

$ sudo apt-get install expect

2.4.9 Tcl

To make sure EcoCoder-AI can enable users to calibrate the model using Simulink external

mode, the installation of Tcl is suggested. To install it, use the command below in Ubuntu:

https://www.mathworks.com/help/matlab/
https://www.mathworks.com/help/simulink/index.html

Copyright ECOTRONS LLC
All Rights Reserved

$ sudo apt-get install tcl

2.5 Install EcoCoder-AI in Linux

A dongle is needed to use EcoCoder-AI. Please contact us to obtain a dongle. The dongle needs

to be plugged in when using EcoCoder-AI.

2.5.1 Preparation

Extract the installer to the user directory. We’ll take EcoCoder_v2.8.9LinuxR2.zip as an example.

$ mkdir -p ~/EcoCoder_v2.8.9LinuxR2

$ sudo unzip <path to package>/EcoCoder_v2.8.9LinuxR2.zip -d ~/

2.5.2 Installation

Switch to root and launch MATLAB.

$ sudo su root

matlab

Copyright ECOTRONS LLC
All Rights Reserved

In MATLAB, change the working directory to where EcoCoder-AI is extracted to. In this example,

it is "/home/plato/EcoCoder_v2.8.9LinuxR2", drag the setup.m in this directory to the Command

Window.

In the Command Window, "EcoCoder has been installed successfully!" and "EcoCoder has been

activated successfully!" should appear as shown below, indicating that EcoCoder-AI has been

installed and activated successfully.

Note: If you relaunch MATLAB, you need to repeat the installation process from the beginning.

2.6 Install EcoCoder-AI in Windows

2.6.1 Preparation

Extract the installer to the user directory.

2.6.2 Installation

Launch MATLAB. Change the MATLAB working directory to where EcoCoder-AI is extracted to.

Drag the setup.m in this directory to the Command Window.

Copyright ECOTRONS LLC
All Rights Reserved

In the Command Window, "EcoCoder has been installed successfully!" and "EcoCoder has been

activated successfully!" should appear, indicating that EcoCoder-AI has been installed and

activated successfully.

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 3 Quick Start

3.1 Quick Start in Linux

There is a demo project in EcoCoder-AI installation directory, you can get started with EcoCoder-

AI with the help of the demo.

Take EAXVA01 as an example.

3.1.1 Create Working Directory

Create an empty directory, copy the demo project into this directory, and set ROS_Demo as

MATLAB working directory.

$ mkdir $HOME/ecocoder_ws

$ sudo cp -r <path to installation directory>/Demo/ROS_Demo $HOME/ecocoder_ws/

3.1.2 Open the Model

In ROS_Demo directory, double click EAXVA01_Color.mdl to open the model as shown below.

The model is designed based on ROS and it can run on EAXVA01. The main functions of the model

are:

 To subscribe to the “Pose” topic, obtain the values of x, y, and z in the “Pose” message,

and broadcast them through the console.

Copyright ECOTRONS LLC
All Rights Reserved

 To post a message to “Color” topic every 2 seconds, with the values of a, b, c and d in

the message incremented by one, and broadcast the new values through the console.

3.1.3 Build the Model

The executable files can be generated by clicking Simulation in the menu, then clicking EcoCoder

Build Model, as shown below. After the building process, a directory called "Target_out" will be

generated in the current folder, with a file named "EAXVA01_Color_0" in it. EAXVA01_Color_0 is

an executable program based on ROS, which can run on an EAXVA01 device.

Copyright ECOTRONS LLC
All Rights Reserved

When you build the model, if the EAXVA01 device is not connected with the host (in this case,

Linux) through ethernet or its IP address and port are not set up in Simulink (you will see how to

set it up in the following chapter), you will get an error alert, saying that the target controller is

not connected. You may ignore this error right now.

3.1.4 Build Other Models

Open “EAXVA01_Pose.mdl” as step 3.1.2. The model is designed based ROS and it can run on

EAXVA01. The main functions of the model are:

 To subscribe to “Color” topic, obtain the values of a, b, c and d in the “Color” message,

and broadcast these values in the console.

 Post a message to the “Pose” topic every 2 seconds, with the values of x, y and z in the

"Pose" message incremented by one and broadcast these values through console.

Build the model as step 3.1.3, you will get “EAXVA01_Pose_0”.

Copyright ECOTRONS LLC
All Rights Reserved

The other two models in this demo, "Host_Color.mdl" and "Host_Pose.mdl", have the same

functions as "EAXVA01_Color.mdl" and "EAXVA01_Pose.mdl" respectively. But the executable

files these two models generate are meant to run on PC.

“EAS2A01_Color.mdl” and “EAS2A01_Pose.mdl” have the same functions as

"EAXVA01_Color.mdl" and "EAXVA01_Pose.mdl" respectively. But the executable files these two

models generate are meant to run on EAS2A01.

3.1.5 Run on PC

3.1.5.1 EAXVA01

Open a terminal, go to “Target_out” directory, initialize ROS runtime environment, and launch

roscore. If you see the texts as below, roscore is launched successfully.

$ cd $HOME/ecocoder_ws/ROS_Demo/Target_out/

$ source /opt/ros/melodic/setup.sh

$ roscore

Copyright ECOTRONS LLC
All Rights Reserved

Open a new terminal, initialize ROS runtime environment, and launch “Host_Pose_0”.

$ source /opt/ros/melodic/setup.sh

$./Host_Pose_0

Open a new terminal, initialize ROS runtime environment, and launch “Host_Color_0”

$ source /opt/ros/melodic/setup.sh

$./Host_Color_0

You can see that Host_Pose is posting messages to topic “Pose” and the messages are subscribed

and received by Host_Color; Host_Color is posting messages to topic “Color” and the messages

are subscribed and received by Host_Pose.

3.1.5.2 EAS2A01

Open a terminal, go to “Target_out” directory, initialize ROS runtime environment, and launch

roscore. If you see the texts as below, roscore is launched successfully.

$ cd $HOME/ecocoder_ws/ROS_Demo/Target_out/

$ source /opt/ros/indigo/setup.sh

$ roscore

Copyright ECOTRONS LLC
All Rights Reserved

Open a new terminal, initialize ROS runtime environment, and launch “Host_Pose_0”.

$ source /opt/ros/indigo/setup.sh

$./Host_Pose_0

Open a new terminal, initialize ROS runtime environment, and launch “Host_Color_0”

$ source /opt/ros/indigo/setup.sh

$./Host_Color_0

You can see that Host_Pose is posting messages to topic “Pose” and the messages are subscribed

and received by Host_Color; Host_Color is posting messages to topic “Color” and the messages

are subscribed and received by Host_Pose.

Copyright ECOTRONS LLC
All Rights Reserved

3.1.6 Run on ACU

3.1.6.1 EAXVA01

Prepare an EAXVA01 device and obtain the IP address of EAXVA01 through the serial terminal. In

the following instructions, <target_ip> represents the IP address of the target controller EAXVA01.

As with how to obtain the IP address of the device, please refer to EAXVA01 Datasheet.

Open a terminal, go to the directory "Target_out", and transmit "EAXVA01_Pose_0" and

"EAXVA01_Color_0" to the EAXVA01 device. Afterwards, log in remotely to the EAXVA01 device,

initialize the ROS runtime environment, and launch roscore.

$ cd $HOME/ecocoder_ws/ROS_Demo/Target_out/

$ scp EAXVA01_Pose_0 EAXVA01_Color_0 nvidia@<target_ip>:/home/nvidia

The password of EAXVA01 by default is nvidia.

$ ssh nvidia@<target_ip>

source /opt/ros/melodic/setup.sh

roscore

Copyright ECOTRONS LLC
All Rights Reserved

Open a new terminal, remotely log in to the EAXVA01 device, initialize the ROS runtime

environment, and start "EAXVA01_Pose_0".

$ ssh nvidia@<target_ip>

The password of EAXVA01 by default is nvidia.

source /opt/ros/melodic/setup.sh

./EAXVA01_Pose_0

Open a new terminal, remotely log in to the EAXVA01 device, initialize the ROS runtime

environment, and start "EAXVA01_Color_0".

Copyright ECOTRONS LLC
All Rights Reserved

$ ssh nvidia@<target_ip>

The password of EAXVA01 by default is nvidia.

$ source /opt/ros/melodic/setup.sh

$./EAXVA01_Color_0

You should see the same results as on PC. Host_Pose is posting messages to topic “Pose” and

the messages are subscribed and received by Host_Color; Host_Color is posting messages to

topic “Color” and the messages are subscribed and received by Host_Pose.

3.1.6.2 EAS2A01

Prepare an EAS2A01 device and obtain the IP address of EAS2A01 through the serial terminal. In

the following instructions, <target_ip> represents the IP address of the target controller EAS2A01.

As with how to obtain the IP address of the device, please refer to EAS2A01 Datasheet.

Open a terminal, go to the directory "Target_out", and transmit "EAS2A01_Pose_0" and

"EAS2A01_Color_0" to the EAS2A01 device. Afterwards, log in remotely to the EAS2A01 device,

initialize the ROS runtime environment, and launch roscore.

$ cd $HOME/ecocoder_ws/ROS_Demo/Target_out/

Copyright ECOTRONS LLC
All Rights Reserved

$ scp EAS2A01_Pose_0 EAS2A01_Color_0 root@<target_ip>:/home/root

$ telnet <target_ip>

source /opt/ros/indigo/setup.sh

roscore

Open a new terminal, remotely log in to the EAS2A01 device, initialize the ROS runtime

environment, and start "EAS2A01_Pose_0".

$ telnet <target_ip>

source /opt/ros/indigo/setup.sh

./EAS2A01_Pose_0

Open a new terminal, remotely log in to the EAS2A01 device, initialize the ROS runtime

environment, and start "EAS2A01_Color_0".

$ telnet <target_ip>

$ source /opt/ros/indigo/setup.sh

$./EAS2A01_Color_0

You should see the same results as on PC. Host_Pose is posting messages to topic “Pose” and

the messages are subscribed and received by Host_Color; Host_Color is posting messages to

topic “Color” and the messages are subscribed and received by Host_Pose.

3.2 Quick Start in Windows

It’s almost the same to design a model, open a demo model in the Windows platform,

compared with that in Linux. Demo models are in the Demo folder in the EcoCoder directory.

Cross-compile is not supported in the Windows platform. Therefore, you need to copy the

generated code to an x86-based Linux and cross-compile the code, or you can copy the

generated code to the target and compile them there. Please refer to EcoSDK User Manual.

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 4 Library

After installing the EcoCoder-AI, many extension libraries will be added to the Simulink library,

which can be used to access the hardware interface developed by Ecotron, or connect the

Simulink model to the ROS system. Click the “Simulink Library” button in the MATLAB interface,

and the dialog box shown below will pop up. You can see that “EcoCoder Blocks” has been added.

4.1 EcoCoder Target Definition

The EcoCoder Target Definition is used to define the target controller.

This module must be added, otherwise an error will occur during compilation.

 Parameters:

o General Parameters:

 Target: you can choose your target hardware (Host is PC).

 Enable BlockReduction: enable automatic optimize code

Copyright ECOTRONS LLC
All Rights Reserved

 Display EcoCoder debug information: checking this will display debug

information

 Namespaces Name: enter the name of ROS Package here

 Application Name: enter the name of ROS Node here

 Target User Name: user name of the target in external mode, used for SSH

login

 Target Password: corresponding password for the username above in

external mode

o Advanced Parameters: under development

4.2 ROS&CyberRT

4.2.1 Publish Message Module

The Publish Message Module is based on ROS. It is used for posting a message to a topic. The

specified m file can be selected according to the input parameter, then it will define a topic,

determine the parameter of the message according to the name of the topic and the content of

the m file, and change the input interface of the module.

Copyright ECOTRONS LLC
All Rights Reserved

For example, if you double-click the module, a dialog box will pop up. Change the contents of

the input box as shown in the picture, then click the “Apply” button. The module will first

search for the file named “Demo_rosTopicMsg.m” in the current working directory. If it can’t

find the file, it will search again in "<path of installation directory>/blocks/My_libs". If the file is

found, it will read the contents of the file and search for the keyword "Color", define a topic

named "Color" and a message named "Color"; according to the "Color" keyword Content,

determine the parameter name and parameter type of the "Color" message, and change the

input interface of the module according to the parameters of the message. For information on

how to define ROS topics via m files, please refer to Define a ROS Topic.

 Parameter:

o en: enables or disables the module, 1 is enable, 0 is disable

o Select Message: assign the m file this module depends on and the name of topic

and message it will create

4.2.2 Subscribe Message Module

The Subscribe Message Module is based on ROS and subscribes to a message on the topic and

calls a subfunction that processes the value of each parameter in the message. The specified m

file can be selected according to the input parameter, then it will define a message and subscribe

to the topic of the same name, and change the output interface parameter of the module

according to the content of the m file and the name of the topic.

Copyright ECOTRONS LLC
All Rights Reserved

For example, if you double-click the module, a dialog box will pop up. Change the contents of the

input box as shown in the figure, then click the “Apply” button. The module will first search for

the file named “Demo_rosTopicMsg.m” in the current working directory. If the search fails, it will

search "<path of installation directory>/blocks/My_libs" for the file. If the file is found, it will read

the contents of the file, search for the "Pose" keyword, and define a message named "Pose" and

subscribe to the message from the topic named "Pose"; the following content of the Pose

keyword determines the parameter name and parameter type of the "Pose" message, and

changes the output interface of the module according to the parameters of the message. Then

the module will output the values of the parameters in the subscribed message to other modules

through these interfaces and call the subfunction connected by f(). For information on how to

define ROS topics via m files, please refer to Define a ROS Topic.

 Parameter:

o f(): the module it links will be called after subscribing the message

o Select Message: assign the m file this module depends on and the name of topic and

message it will create

4.2.3 ROS Info Module

The ROS Info Module outputs the value of a variable through the console. For example, if you

double-click the block, a dialog box will pop up, enter a character or string (usually the name of

the variable to be connected to the input interface of this block), the block will output "[INFO]

Copyright ECOTRONS LLC
All Rights Reserved

[1556623925.873084964] in the console: x : $value", where "$value" represents the value of the

variable connected to the input interface of the block.

 Parameter:

o The string to display: the name of the variable that links to input interface, which will

show up in the console

4.3 Socket CAN Module

This is the CAN communication module, it calls the socket CAN interface of Linux, to realize CAN

message sending and receiving. And it supports to load the dbc file directly, for rapid

development of CAN system design.

4.3.1 Receive CAN Raw with Trigger

This block uses trigger type for receiving the CAN message, when ACU receives the CAN

message, it will be triggered for processing the task through the socket CAN interface.

Copyright ECOTRONS LLC
All Rights Reserved

 Parameter:

o CAN Channel: define the CAN channel for this block

 Output

o f(): the module it links will be called after subscribing the message

o Remote: message type, 1 for remote frame, 0 for data frame

o Extended: message type, 1 for extended frame, 0 for standard frame

o ID: message ID

o Length: message length

o Data: message data

4.3.2 Transmit CAN Message

This block is used to send CAN messages. After calling this module, the socket CAN interface of

ACU will be called to send the CAN message.

 Parameter:

o CAN Channel: define the CAN channel for this block

o Sample Time: define the sampling time for this block

 Output

o Remote: message type, 1 for remote frame, 0 for data frame

o Extended: message type, 1 for extended frame, 0 for standard frame

o ID: message ID

o Length: message length

o Data: message data

Copyright ECOTRONS LLC
All Rights Reserved

4.3.3 Read CAN Message

This module is used to parse CAN messages. The CAN message will be parsed into signals, and

the signal type will be automatically inherited backwards.

The module can’t load dbc files directly, but it can load m files converted from dbc files by using

EcoCAN. (free SW developed by Ecotron)

 Parameter:

o Select CAN Channel State: for ACU customers, please select ‘Disconnected’

o Select CAN Channel: define the CAN channel for this block

o Select M file: load that m file which is converted from dbc file here, the m file has to

be located in the same folder with the model

o Select Message: select the message here

o Show Message Available port: 1 means it is receiving the message

o Show Message Count Port: each time a new message is received, the counter is

incremented by 1

o Show Signal Names: when enabled, the names of the signals will be displayed on the

output line

o Signal prefix: the variable prefix on the signal line

o Sample time: define the sampling time for this block

 Input (The inputs will appear when you set 'select CAN Channel State' to 'disconnected')

o Enable: Enable this block

Copyright ECOTRONS LLC
All Rights Reserved

o Remote: message type, 1 for remote frame, 0 for data frame

o Extended: message type, 1 for extended frame, 0 for standard frame

o ID: message ID

o Length: message length

o Data: message data

 Output

o For each signal, the value of the signal is the physical value

4.3.4 Send CAN Message

This module is used to package CAN messages. CAN signals will be packaged and sent, the signal

type is inherited, the module can’t load dbc files directly, but it can load m files converted from

dbc files by using EcoCAN. (free SW developed by Ecotron)

 Parameter:

o Select CAN Channel State: Select the channel state with the ‘Connected’ and

‘Disconnected’ options.

When ‘Connected’ is selected, there is no output port, and the message information

will be directly sent to the selected channel.

When ‘Disconnected’ is selected, the module appears with output ports from which

the message is exported.

o Select CAN Channel: define the CAN channel for this block

o Select M file: load that m file which is converted from dbc file here, the m file has to

be located in the same folder with the model

o Select Message: select the message here

o Sample time: define the sampling time for this block

Copyright ECOTRONS LLC
All Rights Reserved

 Input

o For each signal, the value of the signal should be the physical value

 Output (The outputs will appear when you set 'select CAN Channel State' to

'disconnected')

o Remote: message type, 1 for remote frame, 0 for data frame

o Extended: message type, 1 for extended frame, 0 for standard frame

o ID: message ID

o Length: message length

o Data: message data

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 5 Define ROS Topic

We will use an example to show how to define a ROS topic. You should create a m file under

the project directory, and name it “Demo_rosTopicMsg.m”. Then edit the file like below:

In this file, we define two topics and messages both named “Color” and “Pose”. The buffer of

topic “Color” can store up to 2 “Color” messages, while that of “Pose” is 3. Message “Color” has

four parameters: uint16 a, float32 b, float32 c, float32 d. Message “Pose” has 3 parameters:

float32 x, float32 y, float32 z.

function ROSMsg = ROS_TopicMsg_Demo(msgname,type)

 if(255==type)

 ROSMsg = struct;

 ROSMsg.num=2;

 ROSMsg.list= cell(1, ROSMsg.num);

 ROSMsg.list{1}='Color';

 ROSMsg.list{2}='Pose';

 else

 ROSMsg = struct;

 switch msgname

 case 'Color'

 ROSMsg = struct;

 ROSMsg.topic_name = 'Color';

 ROSMsg.msg_queue_size = 2;

 ROSMsg.fields{1}.data_name = 'a';

 ROSMsg.fields{1}.data_type = 'uint16';

 ROSMsg.fields{2}.data_name = 'b';

 ROSMsg.fields{2}.data_type = 'float32';

 ROSMsg.fields{3}.data_name = 'c';

 ROSMsg.fields{3}.data_type = 'float32';

 ROSMsg.fields{4}.data_name = 'd';

 ROSMsg.fields{4}.data_type = 'float32';

 case 'Pose'

 ROSMsg = struct;

 ROSMsg.topic_name = 'Pose';

 ROSMsg.msg_queue_size =3;

 ROSMsg.fields{1}.data_name = 'x';

 ROSMsg.fields{1}.data_type = 'float32';

 ROSMsg.fields{2}.data_name = 'y';

 ROSMsg.fields{2}.data_type = 'float32';

 ROSMsg.fields{3}.data_name = 'z';

 ROSMsg.fields{3}.data_type = 'float32';

 end

 end

end

Copyright ECOTRONS LLC
All Rights Reserved

Chapter 6 External Mode

External mode enables the communication between two systems, namely the host and the

target. The host is the computer that you run MATLAB and Simulink on. The target is the ACU

hardware on which we will run the executable files.

The host will require the target to receive the changed model parameters or send out the

messages to the host, by sending request messages to the target. The target will take action

according to the requests from the host. The external mode is based on the C/S structure,

wherein Simulink is the client and the target is the server.

Using external mode, after you change the model parameters, Simulink will send the changed

parameters to the target in real-time, which enables the developers to do on-the-fly calibration.

Thanks to the external mode, You can also monitor the input and the output of all the blocks

and subsystems, without adding any interfaces. By connecting a Scope to the input and output

interfaces, one can monitor their real-time values when the model is running on the target,

which enables the developers to do on-the-fly measurement.

Besides calibration and measurement based on external mode, EcoCoder-AI also supports

automatic cross-compiling on the host, automatic transmitting the generated exectable files to

the target, and automatic running the executable files on the target. After the developers finish

building the model, they can implement cross-compile, copying files to the target and running

the model by one single click. Afterward, one can click on the “Connect” button, the connection

between the host and the target is built.

The process of using external mode is as follows:

Check if the
model

supports
external

mode

Build the
model

Compile the
model and
generate

executable
files

Run the
generated
files on the

target

Connect
Simulink with

the target,
monitor and
calibrate the

model

Copyright ECOTRONS LLC
All Rights Reserved

6.1 Demo Directory

EcoCoder-AI contains demo models, in which developers can find the demo for all the function

blocks. Users can use the demo models to perform an evaluation, or develop their own

application model using the demo. Demo_External.zip is the one user can find in the demo

directory for the external mode.

6.2 Make the Model Support External Mode

6.2.1 New Model Supports External Mode by Default

After installing EcoCoder-AI, users can drag the EcoCoder Target Definition block to the model,

then this model supports external mode by default.

6.2.2 Use Command-Line to Convert the Old Model

If the old model doesn’t support external mode, users can convert the model into one that

supports external mode, by command line. Please make sure you back up the old model before

conversion. Users can use this command in MATLAB command window to convert all the

models in “desPath” directory:

EcoCoder_AutoEnAllExtMode(desPath, ipStr)

Or users can convert a single model using this command:

EcoCoder_AutoEnOneExtMode(mdlPath, ipStr)

For example:

EcoCoder_AutoEnAllExtMode(pwd,'192.168.31.61')

EcoCoder_AutoEnOneExtMode('Test_Host.mdl','192.168.31.60')

6.2.3 Change the Configuration of the Old Model

If the old model doesn’t support external mode, users can convert it by changing the

configuration as well. The process is as follows:

Copyright ECOTRONS LLC
All Rights Reserved

Copyright ECOTRONS LLC
All Rights Reserved

6.3 IP Settings for External Mode

External mode uses TCP/IP protocol to connect the host and the target. Therefore, in the model

configuration, users need to fill in the Target IP address in the “MEX-file argument” textbox.

Target IP address needs to be in the same local network as the host and make sure the

connection between them is good.

6.4 Using Different Ports

If there are multiple applications/models running in the target, and more than one of them

need to connect to the host using the external mode, users need to configure different Port

with the same IP address for them. The configuration should be done both in Simulink and the

target.

6.4.1 Change the Port in Simulink

Copyright ECOTRONS LLC
All Rights Reserved

Users can change the port as follows. By default, the port is 17725. Users can change it into a

number between 256 and 65535, but make sure it doesn’t conflict with any other application.

6.4.2 Change the Port in Target

Suppose the program that you want to run in the target is named as test_host_app, if you want

it to use port 17726, you can type in the console on the target:

$./test_host_app -port 17726

6.5 EcoCoder Build Model

When you finish designing the model, you need to generate the code from the model. In the

external mode, the Build Model Button on tool bar is hidden, you need to use Simulation ->

EcoCoder Build Model to build the model, as shown below.

Copyright ECOTRONS LLC
All Rights Reserved

After the code is generated, EcoCoder will open the folder where the project files are located. If

EcoSDK is installed in the host, EcoCoder will call the cross-compile tool to cross-compile the

model and generate the executable files. If the port is configured correctly and the

communication between the host and the target is well established, EcoCoder will copy the

executable files to the target and run the program as well.

6.6 Connect the Host and the Target

6.6.1 For MATLAB 2019a or Earlier Version

After the executable files are generated, users can establish the connection between the host

and the target. Before connecting, make sure the executable files are running in the target.

You can click the “Connect” button in the Simulink toolbar to connect Simulink with the target.

Copyright ECOTRONS LLC
All Rights Reserved

After the connection is successful, you can manage the external mode connection through

“External Mode Control Panel” in the menu, you can also connect or disconnect with the target

through the panel.

In the window above, you can see there is a “Batch download” checkbox. If it’s checked, you

need to click the “Download” button to download the data to the target. If it’s not checked, the

data will be sent to the target automatically after you change the model parameters.

6.6.2 For MATLAB 2019b

In MATLAB 2019b, all the external mode-related interfaces are located in the Hardware section,

shown as follows:

Copyright ECOTRONS LLC
All Rights Reserved

You need to find the External Model Control Panel to connect or disconnect, as shown below.

6.7 Special Notes for External Mode

1. If there is any Model Reference in your model, parameter monitor and change are not

supported in the model reference. You can monitor the parameters by setting it as an output of

the model reference, and you can change the parameters by setting it as an input of the model

reference.

2. Right now, on the target, you can only run one model that supports external mode.

3. When using the external mode, users can change the parameters in the function-call

subsystems triggered by Subscribe Message Block and Receive CAN Raw with Trigger Block,

but users cannot monitor the parameters in them. If you want to monitor the parameters in

these kinds of subsystems, you can consider setting these parameters as the outputs of these

subsystems.

4. When you convert the model that contains model references, make sure the configuration is

consistent. You can drag EcoCoder Target Definition Block to the model to make it consistent.

Please do not put EcoCoder Target Definition Block in the function-call subsystems.

